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LETTER TO THE EDITOR 

An improved version of the 4 X 4 ‘transfer matrix’ 
method for periodic magnetic multilayers 

Zhu Ninjia and Cao Shu 
Department of Physics, Southeast University, Nanjing, People’s Republic of China 

Received 10 April 1989 

Abstract. An improved version of the 4 X 4 ‘transfer matrix’ method is discussed. This 
method for periodic magnetic multilayers is used to deduce the dispersion relations for 
magnetic multilayers with the elementary unit consisting of N different magnetic layers in 
rectangular metallic waveguides, and it proves to be possible to distinguish the degenerate 
states of different eigenvalues in some cases. 

In recent years, the interactions within the spin wave excitations (magnons) of condensed 
media and between these and the electromagnetic wave in periodic magnetic multilayers 
(PPM) have attracted much attention, both theoretical and experimental [l-lo]. As 
regards theory, many researchers have undertaken not only to give a good description 
of the collective behaviour of magnetic excitations in PMM using the ‘transfer matrix’ (T- 
matrix) method [2,5,9,  11, 121, but also to widen the application of the method (this 
was very clearly, and elegantly, discussed recently by BarnaS [ l l ,  121) to the theoretical 
analysis of semi-infinite multilayers (their periodicity is destroyed). 

But for problems previously addressed [2,5,9,11,12] the system of infinite or semi- 
infinite multilayers without limited boundaries involves only two independent equations 
for the boundary conditions in the interfaces of two different materials, so the T-matrix 
isin2 X 2form. For the magneticmultilayer propertie sin metallicwaveguides, however, 
there are four independent equations for the boundary conditions, so the T-matrix takes 
on a 4 x 4 form. In this Letter we present theoretical discussions of the 4 x 4 T-matrix 
method in a general form and its application in the calculation of magnetic polaritons of 
PMM with the elementary unit consisting of Ndifferent magnetic layers in the rectangular 
metallic waveguides. 

In 1988, BarnaS [12] derived the general dispersion equations for exchange, mag- 
netostatic and retarded waves in infinite and semi-infinite magnetic multilayers with the 
aid of the T-matrix method. Because of the interfacial characteristics of the above 
problems, there are only two equations for the boundary conditions. The relevant matrix 
equations can be written in the following form: 

r 1 r i  

where an elementary unit in the multilayer consists of N different magnetic layers, i.e. 
the T-matrix is Rf-)R(N-l). . . 
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A N + j  

B N + j  

C N + j  

- D N f j  - 

From the transformation properties of the matrix Ru), we find that 

d e t T =  1. (1) 
According to Bloch’s law and (l), two eigenvalues of the T-matrix can be given as 

and e-ik,L. We can obtain two degenerate dispersion curves in the system through 
the standard calculation of the matrix trace without making use of the characteristic 
equation of the T-matrix. 

But if the problem we discuss has four independent equations for boundary con- 
ditions, the transformation equation of the 4 X 4 T-matrix is given by 

Since theT-matrix has the same transformation properties as the2 x 2~-matrix,  equation 
(1) is still satisfied by the T-matrix. 

Using Bloch’s law and (l), the four eigenvalues of the T-matrix are given as 
exp(ik(:)L), exp(iky)L), exp(iky)L), exp(ikY)L) and 

4 

ky) = 0. 
i = l  

It is worthwhile noticing that in general the 4 X 4 T-matrix is not similar to the 2 x 2 
T-matrix, because using the 2 X 2 T-matrix we can directly obtain a dispersion relation 
by finding the trace of the matrix, and it is not necessary to solve its characteristic 
equation (the results for the former and the latter are just the same). For the 4 x 4 T- 
matrix we have to solve the characteristic equation in order to obtain the dispersion 
relation of the matrix and it is rather difficult to distinguish which homologous eigenvalue 
an individual dispersion curve, usually obtained from computer calculation, belongs to, 
because there is probably overlap. If a degenerate dispersion curve group (for instance, 
k y )  and k y ) )  has been obtained from the characteristic equation of the 4 x 4 matrix and 
k y )  = --/cy), we can deduce the relationship of the other two eigenvalues in the T-matrix, 
i.e. k y )  = -k(,4), in accordance with (l), and we get the equation 

4 

2 cos k y L  + 2 cos k p L  = Ti;. 
i= 1 

As an example, let us consider the problem of the magnetic multilayer in rectangular 
metallic waveguides. The problem is given in the same geometry as in [13] and its 
elementary unit consists of N different magnetic layers with uniaxial crystal per- 
meabilities 

The retarded modes inside the metallic waveguide have to satisfy the Maxwell’s 
equation 

(j = 1 ,2 ,  . . . , N). 

where L is defined here as 
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N 

L = x d a  
a =  1 

and d, (a = 1 , 2 ,  . , . , N )  gives the thickness of each layer of an elementary unit. 

formal solutions are 
Considering the boundary conditions of the metallic waveguide, we assume that the 

Hi1 .m)  = {AiJ") exp [aJO, - mL)] + BiJ,") exp [-aJO, - mL)]}sin k l x s i n  k 2 z  

HP.") = {A?,") exp [a, 0, - mL)] + By,") exp [-a, 0, - mL)]} 
(4) 

X (cos k l x  sin k 2 2  + sin k l x  cos k 2 2 )  ( 5 )  

(6) 

HiJ9") = {Ai',") exp [ -a,(y - mL)]} + Bi',") exp [ -aJ(y - mL)]} sin k l x  sin k 2 z  

where kl and k2 are wavevectors along the x direction and the z direction, respectively. 
Substituting (4), ( 5 )  and (6) in the wave equation (3), we find that 

(a: - k:  - k i ) [ k :  + k i  - (pbJ) /pi$)) - &( ' )p i ' )  w'/c'] 

+ & ( ' ) ( W 2 / C 2 ) p $ )  (k:  + kZ, - & ( J ) p i J )  w 2 / c 2  - a: phJ) //A$) ) = 0 

k l  = mn/a k 2  = nn/a 

where m and n are two positive integers that must not be equal to zero simultaneously, 
a and b are the lengths of the sides in the waveguide, p t )  pi$) and pi$) are the components 
of the permeability tensor, and pb) is the reduced permeability in the Voigt configuration 

Imposing the usual boundary conditions and V B ( J )  = 0, we obtain the following 
(p$) = pi; + p$yp$;). 
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where 

and it is to be noted that 

R(w = #h)  [ib $,  

The form of the T-matrix is completely defined by T = R(wR@-') . . . R('). 
It is theoretically feasible to obtain the coupling dispersion relation between the 

electromagnetic wave and spin-wave excitations in the system using the characteristic 
equation of the 4 X 4 T-matrix. 

For the sake of simplicity, we take N = 2 and assume that one layer in an elementary 
unit is magnetic while the other is non-magnetic. With some algebraic manipulation, we 
obtain the dispersion relation 

sinh2(aldl)  sinh2(a,dz)[(a:p* + a;pxxpV) '  - 4a;p:,afp2] 

+ ( a ~ p 3 a 2 p x x  + [sinh(2a,dl) sinh(2a2d2) 

- 4 sinh(a,d)  sinh(a2dz) cos(k,l)J + a ;pxx ,uva~pz  

x (2 ~ 0 ~ ( 2 k , l )  + 4 cosh(a1dl) cosh(aZd2) [cosh(aldl) cosh(a2dz) 

- 2 cos(k,l)]} = 0. 

For an analysis of the above equation's solution, refer to [13]. 
From the dispersion relation obtained we can see that if elklL. is a solution of the 

equation, then e-lkLL must also be a solution-that is, the equation has a group of 
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degenerate dispersion curves-thus we can get the other group of degenerate curves 
from (2), i.e. 

cos(kY)l) + cos(kp)L) = 2 cosh(culdl) cosh(azdz) 

+ SiWBldl )  s i n h ( ~ z d 2 ) [ ( a l l ~ z )  P/P" + (a2la1) PXXlPI 
where p is the permeability of the non-magnetic layers. 

We assumed that the magnetic layers in the waveguide are all ferromagnetic and 
with the same physical parameters as given in [13]. We found through numerical cal- 
culation that the states at k,L = l.2T3 are two-fold degenerate and those where k,L is 
close to zero are all fourfold degenerate in figure 2 of [ 131, 

We have discussed an improved T-matrix method for PPM and its application in the 
problem of a rectangular metallic waveguide. Although the method is restricted to 
problems that have four independent boundary condition equations and two groups of 
degenerate characteristic states (the two-sublattice model of antiferromagnets in the 
Heisenberg case belongs to this class too), most cases of 4 X 4 T-matrices fortunately do 
have two groups of degenerate states due to the symmetry of physical systems. 

We wish to thank Dr J BarnaS for his enlightening work. This work was supported 
financially by the National Fund of Natural Sciences of China. 
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